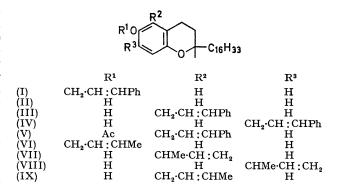
The Formation of Cinnamylphenols by means of an ortho-ortho-Rearrangement


By K. H. BAGGALEY, S. G. BROOKS, J. GREEN, and B. T. REDMAN*

(Beecham Research Laboratories, Vitamins Research Station, Walton Oaks, Tadworth, Surrey)

Summary Two minor products of Claisen rearrangement of 3-phenylprop-2-enyl tocyl ether are apparently formed by an ortho-ortho-rearrangement forbidden by the Woodward-Hoffmann rules.

THE current interest¹ in aromatic sigmatropic rearrangements prompts us to report our recent findings on the Claisen rearrangement of 3-phenylprop-2-enyl tocyl ether (I). The ether was heated (240° , 3 min.) in the absence of solvent to give a mixture of three products which consisted of a major product, tocol (II), as a result of cleavage,² and two minor rearrangement products (III, IV), which were obtained as pale yellow oils. The products were obtained in the proportion 20:4:3.

The u.v. spectrum of (III) $[\lambda_{max}$ in EtOH 252 (ϵ 16,900) 286 (4900), 295 nm (5900)] was characteristic³ of a *trans*cinnamylphenol and its structure as 5-(3'-phenylprop-2'enyl)tocol was assigned by inspection of its n.m.r. spectrum (see Table), which showed resonances characteristic⁴ of the ·CH:CH·CH₂ group present in cinnamylphenols and a singlet for the two aromatic protons. Acetylation of (III) yielded a monoacetate (V) $[\lambda_{max}$ in EtOH 250 (ϵ 22,100), 285 (6100), and 293 nm (4350); ν_{max} 1760 cm⁻¹] the n m r. spectrum of which indicated a characteristic AB system for the *ortho*-substituted aromatic protons. The structure of the second rearrangement product as 7-(3'-phenylprop-2'enyl)tocol (IV) was assigned from its u.v. spectrum $[\lambda_{max}$ in EtOH 251 (ϵ 18,300), 287 (5950), and 295 nm. (6700)] and n.m.r. spectrum (see Table).

The formation of the cinnamylphenols (III, IV) is one of the few examples of an apparent *ortho-ortho*-Claisen rearrangement,^{1,2,5} a type that is forbidden by the Woodward-Hoffmann selection rules.⁶ The Claisen rearrangement of the but-2-enyl ethers of tocol and other tocopherols

······································							
Compound	Aro 5-H	matic pro 7-H	tons 8-H	·CH : CH·CH ₂ · residue	Acetoxy- or hydroxy-group	Phenyl group	Unassigned protons
(I)	3.35	3.28	3.28	3·10—3·90(2)m 5·38(2)d(J 5)		2·66(5)s	7·10—9·30(40)m
(II)	3.41	3.36	3.36		5·00(1)s		7·00—9·30(40)m
(IIÍ)	-	3.38	3.38	3·50—3·80(2)m 6·47(2)m	5·50(1)s	2∙75(5)s	7·00—9·30(40)m
(IV)	3.47		3.37	3·30—3·95(2)m 6·52(2)d(J 5)	5·60(1)s	2.72(5)s	7·00—9·30(40)m
(V)		3.15	3.31	3·40—4·00(2)m 6·58(2)d(1 5)	7·76(3)s	$2 \cdot 75(5)$ s	7·00—9·30(40)m
(VI)	3.35	3.29	3.29	3·70-4·55(2)m 5·60(2)d(7-5)			7·10—9·30(43)m
(IX)		3.41	3-41	4·00-4·80(2)m 6·70(2)d(J 5)	5•50(1)s		7·00—9·30(43)m
				$> CH \cdot CH : CH$			
(VII)		3.38	3.38	$3 \cdot 30 - 4 \cdot 90(3) m$ $6 \cdot 00 - 6 \cdot 40(1) m$	4 ∙95(1)s	—	7·109·30(43)m
(VIII)	3.47		3.39	3·50—5·05(3)m 6·10—6·60(1)m	5·50(1)s		7·10—9·30(43)m

Chemical shifts are given on the τ scale and proton integrals in parentheses. Coupling constants, J, are in Hz. s = singlet; d = doublet; m = multiplet.

was previously shown^{2b} to give normal and abnormal products, and kinetic studies² showed that the product of abnormal rearrangement was formed intramolecularly, probably by an ortho-ortho-shift. The rearrangement of but-2-envl tocyl ether (VI) to give two normal products (VII, VIII) and one abnormal product (IX) has been re-examined and the structures of the products confirmed by n.m.r. spectroscopy (Table). The rearrangement of the

3-phenylprop-2-enyl ether of tocol apparently follows a similar course, being unusual in that none of the normal product was isolated.

The anomalous ortho-ortho-shift that occurs during the pyrolysis of tocopheryl ethers does not occur to any great extent in phenyl or para-alkoxyphenyl ethers^{2b} and appears to be characteristic of the 6-chromanyl structure.

(Received, October 10th, 1969; Com. 1530.)

¹ A. Jefferson and F. Scheinmann, *Quart. Rev.*, 1968, 22, 391; H. J. Hansen and H. Schmid, *Chem. in Britain*, 1969, 5, 111. ² (a) J. Green, S. Marcinkiewicz, and D. McHale, *J. Chem. Soc.* (C), 1966, 1422; (b) D. McHale, S. Marcinkiewicz, and J. Green, *ibid.*, p. 1427.
³ W. D. Ollis and B. T. Redman, unpublished results.
⁴ M. F. Barnes, W. D. Ollis, I. O. Sutherland, O. R. Gottlieb, and M. Taveira Magalhães, *Tetrahedron*, 1965, 21, 2707; M. Gregson, K. Kurosawa, W. D. Ollis, B. T. Redman, R. J. Roberts, I. O. Sutherland, A. Braga de Oliveira, W. B. Eyton, O. R. Gottlieb, and

- ⁶ R. B. Woodward and R. Hoffmann, J. Amer. Chem. Soc., 1965, 87, 2511; R. Hoffmann and R. B. Woodward, *ibid.*, p. 4389.